%SERIALLINK.RNE_MDH Compute inverse dynamics via recursive Newton-Euler formulation % % Recursive Newton-Euler for modified Denavit-Hartenberg notation. Is invoked by % R.RNE(). % % See also SERIALLINK.RNE. % Ryan Steindl based on Robotics Toolbox for MATLAB (v6 and v9) % % Copyright (C) 1993-2011, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see . % % http://www.petercorke.com function tau = rne_mdh(robot, a1, a2, a3, a4, a5) z0 = [0;0;1]; grav = robot.gravity; % default gravity from the object fext = zeros(6, 1); % Set debug to: % 0 no messages % 1 display results of forward and backward recursions % 2 display print R and p* debug = 0; n = robot.n; if numcols(a1) == 3*n, Q = a1(:,1:n); Qd = a1(:,n+1:2*n); Qdd = a1(:,2*n+1:3*n); np = numrows(Q); if nargin >= 3, grav = a2(:); end if nargin == 4, fext = a3; end else np = numrows(a1); Q = a1; Qd = a2; Qdd = a3; if numcols(a1) ~= n | numcols(Qd) ~= n | numcols(Qdd) ~= n | ... numrows(Qd) ~= np | numrows(Qdd) ~= np, error('bad data'); end if nargin >= 5, grav = a4(:); end if nargin == 6, fext = a5; end end tau = zeros(np,n); for p=1:np, q = Q(p,:)'; qd = Qd(p,:)'; qdd = Qdd(p,:)'; Fm = []; Nm = []; pstarm = []; Rm = []; w = zeros(3,1); wd = zeros(3,1); v = zeros(3,1); vd = grav(:); % % init some variables, compute the link rotation matrices % for j=1:n, link = robot.link{j}; Tj = link(q(j)); if link.RP == 'R', D = link.D; else D = q(j); end alpha = link.alpha; pm = [link.A; -D*sin(alpha); D*cos(alpha)]; % (i-1) P i if j == 1, pm = t2r(robot.base) * pm; Tj = robot.base * Tj; end Pm(:,j) = pm; Rm{j} = t2r(Tj); if debug>1, Rm{j} Pm(:,j)' end end % % the forward recursion % for j=1:n, link = robot.link{j}; R = Rm{j}'; % transpose!! P = Pm(:,j); Pc = link.r; % % trailing underscore means new value % if link.RP == 'R', % revolute axis w_ = R*w + z0*qd(j); wd_ = R*wd + cross(R*w,z0*qd(j)) + z0*qdd(j); %v = cross(w,P) + R*v; vd_ = R * (cross(wd,P) + ... cross(w, cross(w,P)) + vd); else % prismatic axis w_ = R*w; wd_ = R*wd; %v = R*(z0*qd(j) + v) + cross(w,P); vd_ = R*(cross(wd,P) + ... cross(w, cross(w,P)) + vd ... ) + 2*cross(R*w,z0*qd(j)) + z0*qdd(j); end % update variables w = w_; wd = wd_; vd = vd_; vdC = cross(wd,Pc) + ... cross(w,cross(w,Pc)) + vd; F = link.m*vdC; N = link.I*wd + cross(w,link.I*w); Fm = [Fm F]; Nm = [Nm N]; if debug, fprintf('w: '); fprintf('%.3f ', w) fprintf('\nwd: '); fprintf('%.3f ', wd) fprintf('\nvd: '); fprintf('%.3f ', vd) fprintf('\nvdbar: '); fprintf('%.3f ', vdC) fprintf('\n'); end end % % the backward recursion % fext = fext(:); f = fext(1:3); % force/moments on end of arm nn = fext(4:6); for j=n:-1:1, % % order of these statements is important, since both % nn and f are functions of previous f. % link = robot.link{j}; if j == n, R = eye(3,3); P = [0;0;0]; else R = Rm{j+1}; P = Pm(:,j+1); % i/P/(i+1) end Pc = link.r; f_ = R*f + Fm(:,j); nn_ = Nm(:,j) + R*nn + cross(Pc,Fm(:,j)) + ... cross(P,R*f); f = f_; nn = nn_; if debug, fprintf('f: '); fprintf('%.3f ', f) fprintf('\nn: '); fprintf('%.3f ', nn) fprintf('\n'); end if link.RP == 'R', % revolute tau(p,j) = nn'*z0 + ... link.G^2 * link.Jm*qdd(j) + ... abs(link.G) * friction(link, qd(j)); else % prismatic tau(p,j) = f'*z0 + ... link.G^2 * link.Jm*qdd(j) + ... abs(link.G) * friction(link, qd(j)); end end end