%TRCHAIN Chain 3D transforms from string % % T = TRCHAIN(S, Q) is a homogeneous transform (4x4) that results from % compounding a number of elementary transformations defined by the string % S. The string S comprises a number of tokens of the form X(ARG) where % X is one of Tx, Ty, Tz, Rx, Ry, or Rz. ARG is the name of a variable in % MATLAB workspace or qJ where J is an integer in the range 1 to N that % selects the variable from the Jth column of the vector Q (1xN). % % For example: % trchain('Rx(q1)Tx(a1)Ry(q2)Ty(a3)Rz(q3)', [1 2 3]) % % is equivalent to computing: % trotx(1) * transl(a1,0,0) * troty(2) * transl(0,a3,0) * trotz(3) % % Notes:: % - The string can contain spaces between elements or on either side of ARG. % - Works for symbolic variables in the workspace and/or passed in via the % vector Q. % - For symbolic operations that involve use of the value pi, make sure you % define it first in the workspace: pi = sym('pi'); % % % See also trchain2, trotx, troty, trotz, transl, SerialLink.trchain, ETS. % Copyright (C) 1993-2015, by Peter I. Corke % % This file is part of The Robotics Toolbox for MATLAB (RTB). % % RTB is free software: you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % RTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU Lesser General Public License for more details. % % You should have received a copy of the GNU Leser General Public License % along with RTB. If not, see . % % http://www.petercorke.com function T = trchain(s, q) if isa(q, 'symfun') q = formula(q); end % s = 'Rx(q1)Tx(a1)Ry(q2)Tx(a3)Rz(q3)Tx(a3)'; tokens = regexp(s, '\s*(?R.?|T.)\(\s*(?[A-Za-z\-][A-Za-z0-9+\-\*/]*)\s*\)\s*', 'names'); T = eye(4,4); joint = 1; for token = tokens % get the argument for this transform element if token.arg(1) == 'q' % from the passed in vector q try arg = q(joint); catch error('RTB:trchain:badarg', 'vector q has insufficient values'); end joint = joint+1; else % or the workspace try arg = evalin('base', token.arg); catch error('RTB:trchain:badarg', 'variable %s does not exist', token.arg); end end % now evaluate the element and update the transform chain switch token.op case 'Rx' T = T * trotx(arg); case 'Ry' T = T * troty(arg); case 'Rz' T = T * trotz(arg); case 'Tx' T = T * transl(arg, 0, 0); case 'Ty' T = T * transl(0, arg, 0); case 'Tz' T = T * transl(0, 0, arg); otherwise error('RTB:trchain:badarg', 'unknown operator %s', token.op); end end if isa(q, 'symfun') T = formula(T); end