You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

515 lines
18 KiB

%Dstar D* navigation class
%
% A concrete subclass of the Navigation class that implements the D*
% navigation algorithm. This provides minimum distance paths and
% facilitates incremental replanning.
%
% Methods::
% plan Compute the cost map given a goal and map
% path Compute a path to the goal
% visualize Display the obstacle map (deprecated)
% plot Display the obstacle map
% costmap_modify Modify the costmap
% modify_cost Modify the costmap (deprecated, use costmap_modify)
% costmap_get Return the current costmap
% costmap_set Set the current costmap
% distancemap_get Set the current distance map
% display Print the parameters in human readable form
% char Convert to string
%
% Properties::
% costmap Distance from each point to the goal.
%
% Example::
% load map1 % load map
% goal = [50,30];
% start=[20,10];
% ds = Dstar(map); % create navigation object
% ds.plan(goal) % create plan for specified goal
% ds.path(start) % animate path from this start location
%
% Notes::
% - Obstacles are represented by Inf in the costmap.
% - The value of each element in the costmap is the shortest distance from the
% corresponding point in the map to the current goal.
%
% References::
% - The D* algorithm for real-time planning of optimal traverses,
% A. Stentz,
% Tech. Rep. CMU-RI-TR-94-37, The Robotics Institute, Carnegie-Mellon University, 1994.
% - Robotics, Vision & Control, Sec 5.2.2,
% Peter Corke, Springer, 2011.
%
% See also Navigation, DXform, PRM.
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for Matlab (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
% Implementation notes:
%
% All the state is kept in the structure called d
% X is an index into the array of states.
% state pointers are kept as matlab array index rather than row,col format
%TODO use pgraph class
% pic 7/09
classdef Dstar < Navigation
properties (SetAccess=private, GetAccess=private)
costmap % world cost map: obstacle = Inf
G % index of goal point
% info kept per cell (state)
b % backpointer (0 means not set)
t % tag: NEW OPEN CLOSED
h % distance map, path cost
% list of open states: 2xN matrix
% each open point is a column, row 1 = index of cell, row 2 = k
openlist
niter
changed
openlist_maxlen % keep track of maximum length
quiet
% tag state values
NEW = 0;
OPEN = 1;
CLOSED = 2;
end
methods
% constructor
function ds = Dstar(world, varargin)
%Dstar.Dstar D* constructor
%
% DS = Dstar(MAP, OPTIONS) is a D* navigation object, and MAP is an
% occupancy grid, a representation of a planar world as a
% matrix whose elements are 0 (free space) or 1 (occupied).
% The occupancy grid is coverted to a costmap with a unit cost
% for traversing a cell.
%
% Options::
% 'goal',G Specify the goal point (2x1)
% 'metric',M Specify the distance metric as 'euclidean' (default)
% or 'cityblock'.
% 'inflate',K Inflate all obstacles by K cells.
% 'quiet' Don't display the progress spinner
%
% Other options are supported by the Navigation superclass.
%
% See also Navigation.Navigation.
% invoke the superclass constructor
ds = ds@Navigation(world, varargin{:});
opt.quiet = false;
opt = tb_optparse(opt, varargin);
ds.quiet = opt.quiet;
ds.occgrid2costmap(ds.occgrid);
% init the D* state variables
ds.reset();
if ~isempty(ds.goal)
ds.goal_change();
end
ds.changed = false;
end
function reset(ds)
%Dstar.reset Reset the planner
%
% DS.reset() resets the D* planner. The next instantiation
% of DS.plan() will perform a global replan.
% build the matrices required to hold the state of each cell for D*
ds.b = zeros(size(ds.costmap), 'uint32'); % backpointers
ds.t = zeros(size(ds.costmap), 'uint8'); % tags
ds.h = Inf*ones(size(ds.costmap)); % path cost estimate
ds.openlist = zeros(2,0); % the open list, one column per point
ds.openlist_maxlen = -Inf;
end
function goal_change(ds)
if isempty(ds.b)
return;
end
goal = ds.goal;
% keep goal in index rather than row,col format
ds.G = sub2ind(size(ds.occgrid), goal(2), goal(1));
ds.INSERT(ds.G, 0, 'goalset');
ds.h(ds.G) = 0;
end
function s = char(ds)
%Dstar.char Convert navigation object to string
%
% DS.char() is a string representing the state of the Dstar
% object in human-readable form.
%
% See also Dstar.display, Navigation.char.
% most of the work is done by the superclass
s = char@Navigation(ds);
% Dstar specific stuff
if ~isempty(ds.costmap)
s = char(s, sprintf(' costmap: %dx%d, open list %d', size(ds.costmap), numcols(ds.openlist)));
else
s = char(s, sprintf(' costmap: empty:'));
end
end
function plot(ds, varargin)
%Dstar.plot Visualize navigation environment
%
% DS.plot() displays the occupancy grid and the goal distance
% in a new figure. The goal distance is shown by intensity which
% increases with distance from the goal. Obstacles are overlaid
% and shown in red.
%
% DS.plot(P) as above but also overlays a path given by the set
% of points P (Mx2).
%
% See also Navigation.plot.
plot@Navigation(ds, 'distance', ds.h, varargin{:});
end
% invoked by Navigation.step
function n = next(ds, current)
if ds.changed
error('Cost map has changed, replan');
end
X = sub2ind(size(ds.costmap), current(2), current(1));
X = ds.b(X);
if X == 0
n = [];
else
[r,c] = ind2sub(size(ds.costmap), X);
n = [c;r];
end
end
function plan(ds, goal)
%Dstar.plan Plan path to goal
%
% DS.plan() updates DS with a costmap of distance to the
% goal from every non-obstacle point in the map. The goal is
% as specified to the constructor.
%
% DS.plan(GOAL) as above but uses the specified goal.
%
% Note::
% - If a path has already been planned, but the costmap was
% modified, then reinvoking this method will replan,
% incrementally updating the plan at lower cost than a full
% replan.
if nargin > 1
ds.goal = goal;
end
% for replanning no goal is needed,
if isempty(ds.goal)
error('must specify a goal point');
end
ds.niter = 0;
while true
if ~ds.quiet && mod(ds.niter, 20) == 0
ds.spinner();
end
ds.niter = ds.niter + 1;
if ds.PROCESS_STATE() < 0
break;
end
if ds.verbose
disp(' ')
end
end
if ~ds.quiet
fprintf('\r');
end
ds.changed = false;
end
function c = distancemap_get(ds)
%Dstar.distancemap_get Get the current distance map
%
% C = DS.distancemap_get() is the current distance map. This map is the same size
% as the occupancy grid and the value of each element is the shortest distance
% from the corresponding point in the map to the current goal. It is computed
% by Dstar.plan.
%
% See also Dstar.plan.
c = ds.h;
end
% functions should be more consistently named:
% costmap_set
% costmap_get
% costmap_modify
function c = costmap_get(ds)
%Dstar.costmap_get Get the current costmap
%
% C = DS.costmap_get() is the current costmap. The cost map is the same size
% as the occupancy grid and the value of each element represents the cost
% of traversing the cell. It is autogenerated by the class constructor from
% the occupancy grid such that:
% - free cell (occupancy 0) has a cost of 1
% - occupied cell (occupancy >0) has a cost of Inf
%
% See also Dstar.costmap_set, Dstar.costmap_modify.
c = ds.costmap;
end
function costmap_set(ds, costmap)
%Dstar.costmap_set Set the current costmap
%
% DS.costmap_set(C) sets the current costmap. The cost map is the same size
% as the occupancy grid and the value of each element represents the cost
% of traversing the cell. A high value indicates that the cell is more costly
% (difficult) to traverese. A value of Inf indicates an obstacle.
%
% Notes::
% - After the cost map is changed the path should be replanned by
% calling DS.plan().
%
% See also Dstar.costmap_get, Dstar.costmap_modify.
if ~all(size(costmap) == size(ds.occgrid))
error('costmap must be same size as occupancy grid');
end
ds.costmap = costmap;
ds.changed = true;
end
function costmap_modify(ds, point, newcost)
%Dstar.costmap_modify Modify cost map
%
% DS.costmap_modify(P, NEW) modifies the cost map at P=[X,Y] to
% have the value NEW. If P (2xM) and NEW (1xM) then the cost of
% the points defined by the columns of P are set to the corresponding
% elements of NEW.
%
% Notes::
% - After one or more point costs have been updated the path
% should be replanned by calling DS.plan().
% - Replaces modify_cost, same syntax.
%
% See also Dstar.costmap_set, Dstar.costmap_get.
modify_cost(ds, point, newcost);
end
function modify_cost(ds, point, newcost)
%Dstar.modify_cost Modify cost map
%
% Notes::
% - Deprecated: use modify_cost instead instead.
%
% See also Dstar.costmap_set, Dstar.costmap_get.
if numel(point) == 2
% for case of single point ensure it is a column vector
point = point(:);
end
if numcols(point) ~= numcols(newcost)
error('number of columns in point must match columns in newcost');
end
for i=1:numcols(point)
X = sub2ind(size(ds.costmap), point(2,i), point(1,i));
ds.costmap(X) = newcost(i);
end
if ds.t(X) == ds.CLOSED
ds.INSERT(X, ds.h(X), 'modifycost');
end
ds.changed = true;
end
end % public methods
methods (Access=protected)
function occgrid2costmap(ds, og, cost)
if nargin < 3
cost = 1;
end
ds.costmap = og;
ds.costmap(ds.costmap==1) = Inf; % occupied cells have Inf driving cost
ds.costmap(ds.costmap==0) = cost; % unoccupied cells have driving cost
end
% The main D* function as per the Stentz paper, comments Ln are the original
% line numbers.
function r = PROCESS_STATE(d)
%% states with the lowest k value are removed from the
%% open list
X = d.MIN_STATE(); % L1
if isempty(X) % L2
r = -1;
return;
end
k_old = d.GET_KMIN(); d.DELETE(X); % L3
if k_old < d.h(X) % L4
d.message('k_old < h(X): %f %f\n', k_old, d.h(X));
for Y=d.neighbours(X) % L5
if (d.h(Y) <= k_old) && (d.h(X) > d.h(Y)+d.c(Y,X)) % L6
d.b(X) = Y;
d.h(X) = d.h (Y) + d.c(Y,X); % L7
end
end
end
%% can we lower the path cost of any neighbours?
if k_old == d.h(X) % L8
d.message('k_old == h(X): %f\n', k_old);
for Y=d.neighbours(X) % L9
if (d.t(Y) == d.NEW) || ... % L10-12
( (d.b(Y) == X) && (d.h(Y) ~= (d.h(X) + d.c(X,Y))) ) || ...
( (d.b(Y) ~= X) && (d.h(Y) > (d.h(X) + d.c(X,Y))) )
d.b(Y) = X; d.INSERT(Y, d.h(X)+d.c(X,Y), 'L13'); % L13
end
end
else % L14
d.message('k_old > h(X)');
for Y=d.neighbours(X) % L15
if (d.t(Y) == d.NEW) || ( (d.b(Y) == X) && (d.h(Y) ~= (d.h(X) + d.c(X,Y))) )
d.b(Y) = X; d.INSERT(Y, d.h(X)+d.c(X,Y), 'L18'); % L18
else
if ( (d.b(Y) ~= X) && (d.h(Y) > (d.h(X) + d.c(X,Y))) )
d.INSERT(X, d.h(X), 'L21'); % L21
else
if (d.b(Y) ~= X) && (d.h(X) > (d.h(Y) + d.c(Y,X))) && ...
(d.t(Y) == d.CLOSED) && d.h(Y) > k_old
d.INSERT(Y, d.h(Y), 'L25'); % L25
end
end
end
end
end
r = 0;
return;
end % process_state(0
function kk = k(ds, X)
i = ds.openlist(1,:) == X;
kk = ds.openlist(2, i);
end
function INSERT(ds, X, h_new, where)
% where is for diagnostic purposes only
ds.message('insert (%s) %d = %f\n', where, X, h_new);
i = find(ds.openlist(1,:) == X);
if length(i) > 1
error('D*:INSERT: state in open list %d times', X);
end
if ds.t(X) == ds.NEW
k_new = h_new;
% add a new column to the open list
ds.openlist = [ds.openlist [X; k_new]];
elseif ds.t(X) == ds.OPEN
k_new = min( ds.openlist(2,i), h_new );
elseif ds.t(X) == ds.CLOSED
k_new = min( ds.h(X), h_new );
% add a new column to the open list
ds.openlist = [ds.openlist [X; k_new]];
end
if numcols(ds.openlist) > ds.openlist_maxlen
ds.openlist_maxlen = numcols(ds.openlist);
end
ds.h(X) = h_new;
ds.t(X) = ds.OPEN;
end
function DELETE(ds, X)
ds.message('delete %d\n', X);
i = find(ds.openlist(1,:) == X);
if length(i) ~= 1
error('D*:DELETE: state %d doesnt exist', X);
end
ds.openlist(:,i) = []; % remove the column
ds.t(X) = ds.CLOSED;
end
% return the index of the open state with the smallest k value
function ms = MIN_STATE(ds)
if isempty(ds.openlist)
ms = [];
else
% find the minimum k value on the openlist
[~,i] = min(ds.openlist(2,:));
% return its index
ms = ds.openlist(1,i);
end
end
function kmin = GET_KMIN(ds)
kmin = min(ds.openlist(2,:));
end
% return the cost of moving from state X to state Y
function cost = c(ds, X, Y)
[r,c] = ind2sub(size(ds.costmap), [X; Y]);
dist = sqrt(sum(diff([r c]).^2));
dcost = (ds.costmap(X) + ds.costmap(Y))/2;
cost = dist * dcost;
end
% return index of neighbour states as a row vector
function Y = neighbours(ds, X)
dims = size(ds.costmap);
[r,c] = ind2sub(dims, X);
% list of 8-way neighbours
Y = [r-1 r-1 r-1 r r r+1 r+1 r+1; c-1 c c+1 c-1 c+1 c-1 c c+1];
k = (min(Y)>0) & (Y(1,:)<=dims(1)) & (Y(2,:)<=dims(2));
Y = Y(:,k);
Y = sub2ind(dims, Y(1,:)', Y(2,:)')';
end
end % protected methods
end % classdef