You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

810 lines
30 KiB

%LINK Robot manipulator Link class
%
% A Link object holds all information related to a robot link such as
% kinematics parameters, rigid-body inertial parameters, motor and
% transmission parameters.
%
% Methods::
% A link transform matrix
% RP joint type: 'R' or 'P'
% friction friction force
% nofriction Link object with friction parameters set to zero
% dyn display link dynamic parameters
% islimit test if joint exceeds soft limit
% isrevolute test if joint is revolute
% isprismatic test if joint is prismatic
% display print the link parameters in human readable form
% char convert to string
%
% Properties (read/write)::
%
% theta kinematic: joint angle
% d kinematic: link offset
% a kinematic: link length
% alpha kinematic: link twist
% sigma kinematic: 0 if revolute, 1 if prismatic
% mdh kinematic: 0 if standard D&H, else 1
% offset kinematic: joint variable offset
% qlim kinematic: joint variable limits [min max]
%
% m dynamic: link mass
% r dynamic: link COG wrt link coordinate frame 3x1
% I dynamic: link inertia matrix, symmetric 3x3, about link COG.
% B dynamic: link viscous friction (motor referred)
% Tc dynamic: link Coulomb friction
%
% G actuator: gear ratio
% Jm actuator: motor inertia (motor referred)
%
% Notes::
% - This is reference class object
% - Link objects can be used in vectors and arrays
%
% References::
% - Robotics, Vision & Control, Chap 7
% P. Corke, Springer 2011.
%
% See also Link, Revolute, Prismatic, SerialLink.
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for Matlab (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
classdef Link < handle
properties
% kinematic parameters
theta % kinematic: link angle
d % kinematic: link offset
alpha % kinematic: link twist
a % kinematic: link length
sigma % revolute=0, prismatic=1
mdh % standard DH=0, MDH=1
offset % joint coordinate offset
name % joint coordinate name
% dynamic parameters
m % dynamic: link mass
r % dynamic: position of COM with respect to link frame (3x1)
I % dynamic: inertia of link with respect to COM (3x3)
Jm % dynamic: motor inertia
B % dynamic: motor viscous friction (1x1 or 2x1)
Tc % dynamic: motor Coulomb friction (1x2 or 2x1)
G % dynamic: gear ratio
qlim % joint coordinate limits (2x1)
end
methods
function l = Link(varargin)
%LINK Create robot link object
%
% This is class constructor function which has several call signatures.
%
% L = Link() is a Link object with default parameters.
%
% L = Link(L1) is a Link object that is a deep copy of the link
% object L1.
%
% L = Link(OPTIONS) is a link object with the kinematic and dynamic
% parameters specified by the key/value pairs.
%
% Key/value pairs::
% 'theta',TH joint angle, if not specified joint is revolute
% 'd',D joint extension, if not specified joint is prismatic
% 'a',A joint offset (default 0)
% 'alpha',A joint twist (default 0)
% 'standard' defined using standard D&H parameters (default).
% 'modified' defined using modified D&H parameters.
% 'offset',O joint variable offset (default 0)
% 'qlim',L joint limit (default [])
% 'I',I link inertia matrix (3x1, 6x1 or 3x3)
% 'r',R link centre of gravity (3x1)
% 'm',M link mass (1x1)
% 'G',G motor gear ratio (default 0)
% 'B',B joint friction, motor referenced (default 0)
% 'Jm',J motor inertia, motor referenced (default 0)
% 'Tc',T Coulomb friction, motor referenced (1x1 or 2x1), (default [0 0])
% 'revolute' for a revolute joint (default)
% 'prismatic' for a prismatic joint 'p'
% 'standard' for standard D&H parameters (default).
% 'modified' for modified D&H parameters.
% 'sym' consider all parameter values as symbolic not numeric
%
% - It is an error to specify 'theta' and 'd'
% - The link inertia matrix (3x3) is symmetric and can be specified by giving
% a 3x3 matrix, the diagonal elements [Ixx Iyy Izz], or the moments and products
% of inertia [Ixx Iyy Izz Ixy Iyz Ixz].
% - All friction quantities are referenced to the motor not the load.
% - Gear ratio is used only to convert motor referenced quantities such as
% friction and interia to the link frame.
%
% Old syntax::
% L = Link(DH, OPTIONS) is a link object using the specified kinematic
% convention and with parameters:
% - DH = [THETA D A ALPHA SIGMA OFFSET] where OFFSET is a constant displacement
% between the user joint angle vector and the true kinematic solution.
% - DH = [THETA D A ALPHA SIGMA] where SIGMA=0 for a revolute and 1 for a
% prismatic joint, OFFSET is zero.
% - DH = [THETA D A ALPHA], joint is assumed revolute and OFFSET is zero.
%
% Options::
%
% 'standard' for standard D&H parameters (default).
% 'modified' for modified D&H parameters.
% 'revolute' for a revolute joint, can be abbreviated to 'r' (default)
% 'prismatic' for a prismatic joint, can be abbreviated to 'p'
%
% Examples::
% A standard Denavit-Hartenberg link
% L3 = Link('d', 0.15005, 'a', 0.0203, 'alpha', -pi/2);
% since 'theta' is not specified the joint is assumed to be revolute, and
% since the kinematic convention is not specified it is assumed 'standard'.
%
% Using the old syntax
% L3 = Link([ 0, 0.15005, 0.0203, -pi/2, 0], 'standard');
% the flag 'standard' is not strictly necessary but adds clarity.
%
% For a modified Denavit-Hartenberg link
% L3 = Link([ 0, 0.15005, 0.0203, -pi/2, 0], 'modified');
%
% Notes::
% - Link object is a reference object, a subclass of Handle object.
% - Link objects can be used in vectors and arrays.
% - The parameter D is unused in a revolute joint, it is simply a placeholder
% in the vector and the value given is ignored.
% - The parameter THETA is unused in a prismatic joint, it is simply a placeholder
% in the vector and the value given is ignored.
% - The joint offset is a constant added to the joint angle variable before
% forward kinematics and subtracted after inverse kinematics. It is useful
% if you want the robot to adopt a 'sensible' pose for zero joint angle
% configuration.
% - The link dynamic (inertial and motor) parameters are all set to
% zero. These must be set by explicitly assigning the object
% properties: m, r, I, Jm, B, Tc, G.
%TODO eliminate legacy dyn matrix
if nargin == 0
% create an 'empty' Link object
% this call signature is needed to support arrays of Links
%% kinematic parameters
l.alpha = 0;
l.a = 0;
l.theta = 0;
l.d = 0;
l.sigma = 0;
l.mdh = 0;
l.offset = 0;
l.qlim = [];
%% dynamic parameters
% these parameters must be set by the user if dynamics is used
l.m = [];
l.r = [];
l.I = [];
% dynamic params with default (zero friction)
l.Jm = 0;
l.G = 0;
l.B = 0;
l.Tc = [0 0];
elseif nargin == 1 && isa(varargin{1}, 'Link')
% clone the passed Link object
l = copy(varargin{1});
else
% Create a new Link based on parameters
% parse all possible options
opt.theta = [];
opt.a = 0;
opt.d = [];
opt.alpha = 0;
opt.G = 0;
opt.B = 0;
opt.Tc = [0 0];
opt.Jm = [];
opt.I = [];
opt.m = [];
opt.r = [];
opt.offset = 0;
opt.qlim = [];
opt.type = {'revolute', 'prismatic', 'fixed'};
opt.convention = {'standard', 'modified'};
opt.sym = false;
[opt,args] = tb_optparse(opt, varargin);
% return a parameter as a number of symbol depending on
% the 'sym' option
if isempty(args)
% This is the new call format, where all parameters are
% given by key/value pairs
%
% eg. L3 = Link('d', 0.15005, 'a', 0.0203, 'alpha', -pi/2);
if ~isempty(opt.theta)
% constant value of theta means it must be prismatic
l.theta = value( opt.theta, opt);
l.sigma = 1;
end
if ~isempty(opt.d)
% constant value of d means it must be revolute
l.d = value( opt.d, opt);
l.sigma = 0;
end
if ~isempty(opt.d) && ~isempty(opt.theta)
error('RTB:Link:badarg', 'specify only one of ''d'' or ''theta''');
end
l.a = value( opt.a, opt);
l.alpha = value( opt.alpha, opt);
l.offset = value( opt.offset, opt);
l.qlim = value( opt.qlim, opt);
l.m = value( opt.m, opt);
l.r = value( opt.r, opt);
l.I = value( opt.I, opt);
l.Jm = value( opt.Jm, opt);
l.G = value( opt.G, opt);
l.B = value( opt.B, opt);
l.Tc = value( opt.Tc, opt);
else
% This is the old call format, where all parameters are
% given by a vector containing kinematic-only, or
% kinematic plus dynamic parameters
%
% eg. L3 = Link([ 0, 0.15005, 0.0203, -pi/2, 0], 'standard');
dh = args{1};
if length(dh) < 4
error('must provide params (theta d a alpha)');
end
% set the kinematic parameters
l.theta = dh(1);
l.d = dh(2);
l.a = dh(3);
l.alpha = dh(4);
l.sigma = 0;
l.offset = 0;
l.mdh = 0; % default to standard D&H
% optionally set sigma and offset
if length(dh) >= 5
l.sigma = dh(5);
end
if length(dh) == 6
l.offset = dh(6);
end
if length(dh) > 6
% legacy DYN matrix
l.sigma = dh(5);
l.mdh = 0; % default to standard D&H
l.offset = 0;
% it's a legacy DYN matrix
l.m = dh(6);
l.r = dh(7:9)'; % a column vector
v = dh(10:15);
l.I = [ v(1) v(4) v(6)
v(4) v(2) v(5)
v(6) v(5) v(3)];
if length(dh) > 15
l.Jm = dh(16);
end
if length(dh) > 16
l.G = dh(17);
else
l.G = 1;
end
if length(dh) > 17
l.B = dh(18);
else
l.B = 0.0;
end
if length(dh) > 18
l.Tc = dh(19:20);
else
l.Tc = [0 0];
end
l.qlim = [];
else
% we know nothing about the dynamics
l.m = [];
l.r = [];
l.I = [];
l.Jm = [];
l.G = 0;
l.B = 0;
l.Tc = [0 0];
l.qlim = [];
end
end
% set the kinematic convention to be used
if strcmp(opt.convention, 'modified')
l.mdh = 1;
else
l.mdh = 0;
end
end
function out = value(v, opt)
if opt.sym
out = sym(v);
else
out = v;
end
end
end % link()
function tau = friction(l, qd)
%Link.friction Joint friction force
%
% F = L.friction(QD) is the joint friction force/torque for link velocity QD.
%
% Notes::
% - Friction values are referred to the motor, not the load.
% - Viscous friction is scaled up by G^2.
% - Coulomb friction is scaled up by G.
% - The sign of the gear ratio is used to determine the appropriate
% Coulomb friction value in the non-symmetric case.
tau = l.B * abs(l.G) * qd;
if issym(l)
tau = tau + l.Tc;
elseif qd > 0
tau = tau + l.Tc(1);
elseif qd < 0
tau = tau + l.Tc(2);
end
tau = -abs(l.G) * tau; % friction opposes motion
end % friction()
function l2 = nofriction(l, only)
%Link.nofriction Remove friction
%
% LN = L.nofriction() is a link object with the same parameters as L except
% nonlinear (Coulomb) friction parameter is zero.
%
% LN = L.nofriction('all') as above except that viscous and Coulomb friction
% are set to zero.
%
% LN = L.nofriction('coulomb') as above except that Coulomb friction is set to zero.
%
% LN = L.nofriction('viscous') as above except that viscous friction is set to zero.
%
% Notes::
% - Forward dynamic simulation can be very slow with finite Coulomb friction.
%
% See also SerialLink.nofriction, SerialLink.fdyn.
l2 = Link(l);
if nargin == 1
only = 'coulomb';
end
switch only
case 'all'
l2.B = 0;
l2.Tc = [0 0];
case 'viscous'
l2.B = 0;
case 'coulomb'
l2.Tc = [0 0];
end
end
function v = RP(l)
%Link.RP Joint type
%
% c = L.RP() is a character 'R' or 'P' depending on whether joint is revolute or
% prismatic respectively.
% If L is a vector of Link objects return a string of characters in joint order.
v = '';
for ll=l
if ll.sigma == 0
v = strcat(v, 'R');
else
v = strcat(v, 'P');
end
end
end % RP()
function set.r(l, v)
%Link.r Set centre of gravity
%
% L.r = R set the link centre of gravity (COG) to R (3-vector).
%
if isempty(v)
return;
end
if length(v) ~= 3
error('RTB:Link:badarg', 'COG must be a 3-vector');
end
l.r = v(:)';
end % set.r()
function set.Tc(l, v)
%Link.Tc Set Coulomb friction
%
% L.Tc = F set Coulomb friction parameters to [F -F], for a symmetric
% Coulomb friction model.
%
% L.Tc = [FP FM] set Coulomb friction to [FP FM], for an asymmetric
% Coulomb friction model. FP>0 and FM<0.
%
% See also Link.friction.
if isempty(v)
return;
end
if isa(v,'sym') && ~isempty(findsym(v))
l.Tc = sym('Tc');
elseif isa(v,'sym') && isempty(findsym(v))
v = double(v);
end
if length(v) == 1 ~isa(v,'sym')
l.Tc = [v -v];
elseif length(v) == 2 && ~isa(v,'sym')
if v(1) < v(2)
error('RTB:Link:badarg', 'Coulomb friction is [Tc+ Tc-]');
end
l.Tc = v;
else
error('Coulomb friction vector can have 1 (symmetric) or 2 (asymmetric) elements only')
end
end % set.Tc()
function set.I(l, v)
%Link.I Set link inertia
%
% L.I = [Ixx Iyy Izz] set link inertia to a diagonal matrix.
%
% L.I = [Ixx Iyy Izz Ixy Iyz Ixz] set link inertia to a symmetric matrix with
% specified inertia and product of intertia elements.
%
% L.I = M set Link inertia matrix to M (3x3) which must be symmetric.
if isempty(v)
return;
end
if all(size(v) == [3 3])
if isa(v, 'double') && norm(v-v') > eps
error('inertia matrix must be symmetric');
end
l.I = v;
elseif length(v) == 3
l.I = diag(v);
elseif length(v) == 6
l.I = [ v(1) v(4) v(6)
v(4) v(2) v(5)
v(6) v(5) v(3) ];
else
error('RTB:Link:badarg', 'must set I to 3-vector, 6-vector or symmetric 3x3');
end
end % set.I()
function v = islimit(l, q)
%Link.islimit Test joint limits
%
% L.islimit(Q) is true (1) if Q is outside the soft limits set for this joint.
%
% Note::
% - The limits are not currently used by any Toolbox functions.
if isempty(l.qlim)
error('no limits assigned to link')
end
v = (q > l.qlim(2)) - (q < l.qlim(1));
end % islimit()
function v = isrevolute(L)
%Link.isrevolute Test if joint is revolute
%
% L.isrevolute() is true (1) if joint is revolute.
%
% See also Link.isprismatic.
v = L.sigma == 0;
end
function v = isprismatic(L)
%Link.isprismatic Test if joint is prismatic
%
% L.isprismatic() is true (1) if joint is prismatic.
%
% See also Link.isrevolute.
v = L.sigma == 1;
end
function T = A(L, q)
%Link.A Link transform matrix
%
% T = L.A(Q) is the link homogeneous transformation matrix (4x4) corresponding
% to the link variable Q which is either the Denavit-Hartenberg parameter THETA (revolute)
% or D (prismatic).
%
% Notes::
% - For a revolute joint the THETA parameter of the link is ignored, and Q used instead.
% - For a prismatic joint the D parameter of the link is ignored, and Q used instead.
% - The link offset parameter is added to Q before computation of the transformation matrix.
sa = sin(L.alpha); ca = cos(L.alpha);
q = q + L.offset;
if L.sigma == 0
% revolute
st = sin(q); ct = cos(q);
d = L.d;
else
% prismatic
st = sin(L.theta); ct = cos(L.theta);
d = q;
end
if L.mdh == 0
% standard DH
T = [ ct -st*ca st*sa L.a*ct
st ct*ca -ct*sa L.a*st
0 sa ca d
0 0 0 1];
else
% modified DH
T = [ ct -st 0 L.a
st*ca ct*ca -sa -sa*d
st*sa ct*sa ca ca*d
0 0 0 1];
end
end % A()
function display(l)
%Link.display Display parameters
%
% L.display() displays the link parameters in compact single line format. If L is a
% vector of Link objects displays one line per element.
%
% Notes::
% - This method is invoked implicitly at the command line when the result
% of an expression is a Link object and the command has no trailing
% semicolon.
%
% See also Link.char, Link.dyn, SerialLink.showlink.
loose = strcmp( get(0, 'FormatSpacing'), 'loose');
if loose
disp(' ');
end
disp([inputname(1), ' = '])
disp( char(l) );
end % display()
function s = char(links, from_robot)
%Link.char Convert to string
%
% s = L.char() is a string showing link parameters in a compact single line format.
% If L is a vector of Link objects return a string with one line per Link.
%
% See also Link.display.
% display in the order theta d a alpha
if nargin < 2
from_robot = false;
end
s = '';
for j=1:length(links)
l = links(j);
conv = l.RP;
if l.mdh == 0
conv = strcat(conv, ',stdDH');
else
conv = strcat(conv, ',modDH');
end
if length(links) == 1
qname = 'q';
else
qname = sprintf('q%d', j);
end
if from_robot
if l.sigma == 1
% prismatic joint
js = sprintf('|%3d|%11s|%11s|%11s|%11s|', ...
j, ...
render(l.theta), ...
qname, ...
render(l.a), ...
render(l.alpha));
else
% revolute joint
js = sprintf('|%3d|%11s|%11s|%11s|%11s|', ...
j, ...
qname, ...
render(l.d), ...
render(l.a), ...
render(l.alpha));
end
else
if l.sigma == 1
% prismatic joint
js = sprintf(' theta=%s, d=%s, a=%s, alpha=%s (%s)', ...
render(l.theta), ...
qname, ...
render(l.a), ...
render(l.alpha), ...
conv);
else
% revolute
js = sprintf(' theta=%s, d=%s, a=%s, alpha=%s (%s)', ...
qname, ...
render(l.d), ...
render(l.a), ...
render(l.alpha), ...
conv);
end
end
if isempty(s)
s = js;
else
s = char(s, js);
end
end
function s = render(v, fmt)
if nargin < 2
fmt = '%11.4g';
end
if isa(v, 'double')
s = sprintf(fmt, v);
elseif isa(v, 'sym')
s = char(v);
else
error('RTB:Link:badarg', 'Link parameter must be numeric or symbolic');
end
end
end % char()
function dyn(links)
%Link.dyn Show inertial properties of link
%
% L.dyn() displays the inertial properties of the link object in a multi-line
% format. The properties shown are mass, centre of mass, inertia, friction,
% gear ratio and motor properties.
%
% If L is a vector of Link objects show properties for each link.
%
% See also SerialLink.dyn.
for j=1:numel(links)
l = links(j);
if numel(links) > 1
fprintf('\nLink %d::', j);
end
fprintf('%s\n', l.char());
if ~isempty(l.m)
fprintf(' m = %f\n', l.m)
end
if ~isempty(l.r)
fprintf(' r = %f %f %f\n', l.r);
end
if ~isempty(l.I)
fprintf(' I = | %f %f %f |\n', l.I(1,:));
fprintf(' | %f %f %f |\n', l.I(2,:));
fprintf(' | %f %f %f |\n', l.I(3,:));
end
if ~isempty(l.Jm)
fprintf(' Jm = %f\n', l.Jm);
end
if ~isempty(l.B)
fprintf(' Bm = %f\n', l.B);
end
if ~isempty(l.Tc)
fprintf(' Tc = %f(+) %f(-)\n', l.Tc(1), l.Tc(2));
end
if ~isempty(l.G)
fprintf(' G = %f\n', l.G);
end
if ~isempty(l.qlim)
fprintf(' qlim = %f to %f\n', l.qlim(1), l.qlim(2));
end
end
end % dyn()
% Make a copy of a handle object.
% http://www.mathworks.com/matlabcentral/newsreader/view_thread/257925
function new = copy(this)
for j=1:length(this)
% Instantiate new object of the same class.
%new(j) = feval(class(this(j)));
new(j) = Link();
% Copy all non-hidden properties.
p = properties(this(j));
for i = 1:length(p)
new(j).(p{i}) = this(j).(p{i});
end
end
end
function links = horzcat(this, varargin)
links = this.toLink();
for i=1:length(varargin)
links = cat(2, links, varargin{i}.toLink());
end
end
function links = vertcat(this, varargin)
links = this.horzcat(varargin{:});
end
function new = toLink(this)
for j=1:length(this)
new(j) = Link();
% Copy all non-hidden properties.
p = properties(this(j));
for i = 1:length(p)
new(j).(p{i}) = this(j).(p{i});
end
end
end
function res = issym(l)
res = isa(l.alpha,'sym');
end
function sl = sym(l)
sl = Link(l); % clone the link
if ~isempty(sl.theta)
sl.theta = sym(sl.theta);
end
if ~isempty(sl.d)
sl.d = sym(sl.d);
end
sl.alpha = sym(sl.alpha);
sl.a = sym(sl.a);
sl.offset = sym(sl.offset);
sl.I = sym(sl.I);
sl.r = sym(sl.r);
sl.m = sym(sl.m);
sl.Jm = sym(sl.Jm);
sl.G = sym(sl.G);
sl.B = sym(sl.B);
sl.Tc = sym(sl.Tc);
end
end % methods
end % class