You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

360 lines
12 KiB

%RangeBearingSensor Range and bearing sensor class
%
% A concrete subclass of the Sensor class that implements a range and bearing
% angle sensor that provides robot-centric measurements of point features in
% the world. To enable this it has references to a map of the world (Map object)
% and a robot moving through the world (Vehicle object).
%
% Methods::
%
% reading range/bearing observation of random feature
% h range/bearing observation of specific feature
% Hx Jacobian matrix dh/dxv
% Hxf Jacobian matrix dh/dxf
% Hw Jacobian matrix dh/dw
%
% g feature positin given vehicle pose and observation
% Gx Jacobian matrix dg/dxv
% Gz Jacobian matrix dg/dz
%
% Properties (read/write)::
% W measurement covariance matrix (2x2)
% interval valid measurements returned every interval'th call to reading()
%
% Reference::
%
% Robotics, Vision & Control, Chap 6,
% Peter Corke,
% Springer 2011
%
% See also Sensor, Vehicle, Map, EKF.
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for Matlab (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
classdef RangeBearingSensor < Sensor
properties
W % measurment covariance
r_range % range limits
theta_range % angle limits
randstream % random stream just for Sensors
end
properties (SetAccess = private)
count % number of reading()s
end
methods
function s = RangeBearingSensor(robot, map, W, varargin)
%RangeBearingSensor.RangeBearingSensor Range and bearing sensor constructor
%
% S = RangeBearingSensor(VEHICLE, MAP, W, OPTIONS) is an object representing
% a range and bearing angle sensor mounted on the Vehicle object
% VEHICLE and observing an environment of known landmarks represented by the
% map object MAP. The sensor covariance is R (2x2) representing range and bearing
% covariance.
%
% Options::
% 'range', xmax maximum range of sensor
% 'range', [xmin xmax] minimum and maximum range of sensor
% 'angle', TH detection for angles betwen -TH to +TH
% 'angle', [THMIN THMAX] detection for angles betwen THMIN
% and THMAX
% 'skip', I return a valid reading on every I'th
% call
% 'fail', [TMIN TMAX] sensor simulates failure between
% timesteps TMIN and TMAX
%
% See also Sensor, Vehicle, Map, EKF.
% call the superclass constructor
s = s@Sensor(robot, map, varargin{:});
s.randstream = RandStream.create('mt19937ar');
opt.range = [];
opt.thrange = [];
[opt,args] = tb_optparse(opt, varargin);
s.W = W;
if ~isempty(opt.range)
if length(opt.range) == 1
s.r_range = [0 opt.range];
elseif length(opt.thrange) == 2
s.r_range = opt.range;
end
end
if ~isempty(opt.thrange)
if length(opt.thrange) == 1
s.theta_range = [-opt.thrange opt.thrange];
elseif length(opt.thrange) == 2
s.theta_range = opt.thrange;
end
end
s.count = 0;
end
function k = selectFeature(s)
k = s.randstream.randi(s.map.nfeatures);
end
function [z,jf] = reading(s)
%RangeBearingSensor.h Landmark range and bearing
%
% [Z,K] = S.reading() is an observation of a random landmark where
% Z=[R,THETA] is the range and bearing with additive Gaussian noise
% of covariance R (specified to the constructor). K is the index of
% the map feature that was observed. If no valid measurement, ie. no
% features within range, interval subsampling enabled or simulated
% failure the return is Z=[] and K=NaN.
%
% See also RangeBearingSensor.h.
% model a sensor that emits readings every interval samples
s.count = s.count + 1;
% check conditions for NOT returning a value
z = [];
jf = NaN;
% sample interval
if mod(s.count, s.interval) ~= 0
return;
end
% simulated failure
if ~isempty(s.fail) && (s.count >= s.fail(1)) && (s.count <= s.fail(2))
return;
end
if ~isempty(s.r_range) || ~isempty(s.theta_range)
% if range and bearing angle limits are in place look for
% any landmarks that match criteria
% get range/bearing to all landmarks
z = s.h(s.robot.x');
jf = 1:numcols(s.map.map);
if ~isempty(s.r_range)
% find all within range
k = find(z(:,1) >= s.r_range(1) & z(:,1) <= s.r_range(2));
z = z(k,:);
jf = jf(k);
end
if ~isempty(s.theta_range)
% find all within angular range
k = find(z(:,2) >= s.theta_range(1) & z(:,2) <= s.theta_range(2));
z = z(k,:);
jf = jf(k);
end
if isempty(k)
% no landmarks found
z = [];
jf = NaN;
elseif length(k) >= 1
% more than 1 in range, pick a random one
i = s.randstream.randi(length(k));
z = z(i,:);
jf = jf(i);
end
else
% randomly choose the feature
jf = s.selectFeature();
% compute the range and bearing from robot to feature
z = s.h(s.robot.x', jf);
end
if s.verbose
fprintf('Sensor:: feature %d: %.1f %.1f\n', k, z);
end
if ~isempty(z) & s.animate
s.plot(jf);
end
end
function z = h(s, xv, jf)
%RangeBearingSensor.h Landmark range and bearing
%
% Z = S.h(XV, J) is a sensor observation (1x2), range and bearing, from vehicle at
% pose XV (1x3) to the map feature K.
%
% Z = S.h(XV, XF) as above but compute range and bearing to a feature at coordinate XF.
%
% Z = s.h(XV) as above but computer range and bearing to all
% map features. Z has one row per feature.
%
% Notes::
% - Noise with covariance W is added to each row of Z.
% - Supports vectorized operation where XV (Nx3) and Z (Nx2).
%
% See also RangeBearingSensor.Hx, RangeBearingSensor.Hw, RangeBearingSensor.Hxf.
if nargin < 3
% s.h(XV)
xf = s.map.map;
elseif length(jf) == 1
% s.h(XV, JF)
xf = s.map.map(:,jf);
else
% s.h(XV, XF)
xf = jf;
end
% Straightforward code:
%
% dx = xf(1) - xv(1); dy = xf(2) - xv(2);
%
% z = zeros(2,1);
% z(1) = sqrt(dx^2 + dy^2); % range measurement
% z(2) = atan2(dy, dx) - xv(3); % bearing measurement
%
% Vectorized code:
dx = xf(1,:) - xv(:,1); dy = xf(2,:) - xv(:,2);
z = [sqrt(dx.^2 + dy.^2) atan2(dy, dx)-xv(:,3) ]; % range & bearing measurement
% add noise with covariance W
z = z + s.randstream.randn(size(z)) * sqrt(s.W);
end
function J = Hx(s, xv, jf)
%RangeBearingSensor.Hx Jacobian dh/dxv
%
% J = S.Hx(XV, K) returns the Jacobian dh/dxv (2x3) at the vehicle
% state XV (3x1) for map feature K.
%
% J = S.Hx(XV, XF) as above but for a feature at coordinate XF.
%
% See also RangeBearingSensor.h.
if length(jf) == 1
xf = s.map.map(:,jf);
else
xf = jf;
end
if isempty(xv)
xv = s.robot.x;
end
Delta = xf - xv(1:2)';
r = norm(Delta);
J = [
-Delta(1)/r, -Delta(2)/r, 0
Delta(2)/(r^2), -Delta(1)/(r^2), -1
];
end
function J = Hxf(s, xv, jf)
%RangeBearingSensor.Hxf Jacobian dh/dxf
%
% J = S.Hxf(XV, K) is the Jacobian dh/dxv (2x2) at the vehicle
% state XV (3x1) for map feature K.
%
% J = S.Hxf(XV, XF) as above but for a feature at coordinate XF (1x2).
%
% See also RangeBearingSensor.h.
if length(jf) == 1
xf = s.map.map(:,jf);
else
xf = jf;
end
Delta = xf - xv(1:2)';
r = norm(Delta);
J = [
Delta(1)/r, Delta(2)/r
-Delta(2)/(r^2), Delta(1)/(r^2)
];
end
function J = Hw(s, xv, jf)
%RangeBearingSensor.Hx Jacobian dh/dv
%
% J = S.Hw(XV, K) is the Jacobian dh/dv (2x2) at the vehicle
% state XV (3x1) for map feature K.
%
% See also RangeBearingSensor.h.
J = eye(2,2);
end
function xf = g(s, xv, z)
%RangeBearingSensor.g Compute landmark location
%
% P = S.g(XV, Z) is the world coordinate (1x2) of a feature given
% the sensor observation Z (1x2) and vehicle state XV (3x1).
%
% See also RangeBearingSensor.Gx, RangeBearingSensor.Gz.
range = z(1);
bearing = z(2) + xv(3); % bearing angle in vehicle frame
xf = [xv(1)+range*cos(bearing) xv(2)+range*sin(bearing)];
end
function J = Gx(s, xv, z)
%RangeBearingSensor.Gxv Jacobian dg/dx
%
% J = S.Gx(XV, Z) is the Jacobian dg/dxv (2x3) at the vehicle state XV (3x1) for
% sensor observation Z (2x1).
%
% See also RangeBearingSensor.g.
theta = xv(3);
r = z(1);
bearing = z(2);
J = [
1, 0, -r*sin(theta + bearing);
0, 1, r*cos(theta + bearing)
];
end
function J = Gz(s, xv, z)
%RangeBearingSensor.Gz Jacobian dg/dz
%
% J = S.Gz(XV, Z) is the Jacobian dg/dz (2x2) at the vehicle state XV (3x1) for
% sensor observation Z (2x1).
%
% See also RangeBearingSensor.g.
theta = xv(3);
r = z(1);
bearing = z(2);
J = [
cos(theta + bearing), -r*sin(theta + bearing);
sin(theta + bearing), r*cos(theta + bearing)
];
end
function str = char(s)
str = char@Sensor(s);
str = char(str, ['W = ', mat2str(s.W, 3)]);
str = char(str, sprintf('interval %d samples', s.interval) );
if ~isempty(s.r_range)
str = char(str, sprintf('range: %g to %g', s.r_range) );
end
if ~isempty(s.theta_range)
str = char(str, sprintf('angle: %g to %g', s.r_range) );
end
end
end % method
end % classdef