You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

144 lines
4.0 KiB

%LSPB Linear segment with parabolic blend
%
% [S,SD,SDD] = LSPB(S0, SF, M) is a scalar trajectory (Mx1) that varies
% smoothly from S0 to SF in M steps using a constant velocity segment and
% parabolic blends (a trapezoidal path). Velocity and acceleration can be
% optionally returned as SD (Mx1) and SDD (Mx1).
%
% [S,SD,SDD] = LSPB(S0, SF, M, V) as above but specifies the velocity of
% the linear segment which is normally computed automatically.
%
% [S,SD,SDD] = LSPB(S0, SF, T) as above but specifies the trajectory in
% terms of the length of the time vector T (Mx1).
%
% [S,SD,SDD] = LSPB(S0, SF, T, V) as above but specifies the velocity of
% the linear segment which is normally computed automatically and a time
% vector.
%
% Notes::
% - If no output arguments are specified S, SD, and SDD are plotted.
% - For some values of V no solution is possible and an error is flagged.
%
% See also TPOLY, JTRAJ.
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for Matlab (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
function [s,sd,sdd] = lspb(q0, q1, t, V)
t0 = t;
if isscalar(t)
t = (0:t-1)';
else
t = t(:);
end
tf = max(t(:));
if nargin < 4
% if velocity not specified, compute it
V = (q1-q0)/tf * 1.5;
else
if V < (q1-q0)/tf
error('V too small');
elseif V > 2*(q1-q0)/tf
error('V too big');
end
end
if q0 == q1
s = ones(size(t)) * q0;
sd = zeros(size(t));
sdd = zeros(size(t));
return
end
tb = (q0 - q1 + V*tf)/V;
a = V/tb;
p = zeros(length(t), 1);
pd = p;
pdd = p;
for i = 1:length(t)
tt = t(i);
if tt <= tb
% initial blend
p(i) = q0 + a/2*tt^2;
pd(i) = a*tt;
pdd(i) = a;
elseif tt <= (tf-tb)
% linear motion
p(i) = (q1+q0-V*tf)/2 + V*tt;
pd(i) = V;
pdd(i) = 0;
else
% final blend
p(i) = q1 - a/2*tf^2 + a*tf*tt - a/2*tt^2;
pd(i) = a*tf - a*tt;
pdd(i) = -a;
end
end
switch nargout
case 0
if isscalar(t0)
% for scalar time steps, axis is labeled 1 .. M
xt = t+1;
else
% for vector time steps, axis is labeled by vector M
xt = t;
end
clf
subplot(311)
% highlight the accel, coast, decel phases with different
% colored markers
hold on
k = t<= tb;
plot(xt(k), p(k), 'r-o');
k = (t>=tb) & (t<= (tf-tb));
plot(xt(k), p(k), 'b-o');
k = t>= (tf-tb);
plot(xt(k), p(k), 'g-o');
grid; ylabel('s');
hold off
subplot(312)
plot(xt, pd); grid; ylabel('sd');
subplot(313)
plot(xt, pdd); grid; ylabel('sdd');
if ~isscalar(t0)
xlabel('time')
else
for c=get(gcf, 'Children');
set(c, 'XLim', [1 t0]);
end
end
shg
case 1
s = p;
case 2
s = p;
sd = pd;
case 3
s = p;
sd = pd;
sdd = pdd;
end