You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
157 lines
3.9 KiB
157 lines
3.9 KiB
%SerialLink.ikine3 Inverse kinematics for 3-axis robot with no wrist
|
|
%
|
|
% Q = R.ikine3(T) is the joint coordinates corresponding to the robot
|
|
% end-effector pose T represented by the homogenenous transform. This
|
|
% is a analytic solution for a 3-axis robot (such as the first three joints
|
|
% of a robot like the Puma 560).
|
|
%
|
|
% Q = R.ikine3(T, CONFIG) as above but specifies the configuration of the arm in
|
|
% the form of a string containing one or more of the configuration codes:
|
|
%
|
|
% 'l' arm to the left (default)
|
|
% 'r' arm to the right
|
|
% 'u' elbow up (default)
|
|
% 'd' elbow down
|
|
%
|
|
% Notes::
|
|
% - The same as IKINE6S without the wrist.
|
|
% - The inverse kinematic solution is generally not unique, and
|
|
% depends on the configuration string.
|
|
% - Joint offsets, if defined, are added to the inverse kinematics to
|
|
% generate Q.
|
|
%
|
|
% Reference::
|
|
%
|
|
% Inverse kinematics for a PUMA 560 based on the equations by Paul and Zhang
|
|
% From The International Journal of Robotics Research
|
|
% Vol. 5, No. 2, Summer 1986, p. 32-44
|
|
%
|
|
%
|
|
% Author::
|
|
% Robert Biro with Gary Von McMurray,
|
|
% GTRI/ATRP/IIMB,
|
|
% Georgia Institute of Technology
|
|
% 2/13/95
|
|
%
|
|
% See also SerialLink.FKINE, SerialLink.IKINE.
|
|
|
|
function theta = ikine3(robot, T, varargin)
|
|
|
|
if ~strncmp(robot.config, 'RRR', 3)
|
|
error('Solution only applicable for 6DOF all-revolute manipulator');
|
|
end
|
|
|
|
if robot.mdh ~= 0
|
|
error('Solution only applicable for standard DH conventions');
|
|
end
|
|
|
|
if ndims(T) == 3
|
|
theta = zeros(size(T,3),robot.n);
|
|
for k=1:size(T,3)
|
|
theta(k,:) = ikine3(robot, T(:,:,k), varargin{:});
|
|
end
|
|
return;
|
|
end
|
|
L = robot.links;
|
|
a2 = L(2).a;
|
|
a3 = L(3).a;
|
|
|
|
d3 = L(3).d;
|
|
|
|
if ~ishomog(T)
|
|
error('T is not a homog xform');
|
|
end
|
|
|
|
% undo base transformation
|
|
T = robot.base \ T;
|
|
|
|
% The following parameters are extracted from the Homogeneous
|
|
% Transformation as defined in equation 1, p. 34
|
|
|
|
Px = T(1,4);
|
|
Py = T(2,4);
|
|
Pz = T(3,4);
|
|
|
|
% The configuration parameter determines what n1,n2 values are used
|
|
% and how many solutions are determined which have values of -1 or +1.
|
|
|
|
if nargin < 3
|
|
configuration = '';
|
|
else
|
|
configuration = lower(varargin{1});
|
|
end
|
|
|
|
% default configuration
|
|
|
|
n1 = -1; % L
|
|
n2 = -1; % U
|
|
if ~isempty(strfind(configuration, 'l'))
|
|
n1 = -1;
|
|
end
|
|
if ~isempty(strfind(configuration, 'r'))
|
|
n1 = 1;
|
|
end
|
|
if ~isempty(strfind(configuration, 'u'))
|
|
if n1 == 1
|
|
n2 = 1;
|
|
else
|
|
n2 = -1;
|
|
end
|
|
end
|
|
if ~isempty(strfind(configuration, 'd'))
|
|
if n1 == 1
|
|
n2 = -1;
|
|
else
|
|
n2 = 1;
|
|
end
|
|
end
|
|
|
|
%
|
|
% Solve for theta(1)
|
|
%
|
|
% r is defined in equation 38, p. 39.
|
|
% theta(1) uses equations 40 and 41, p.39,
|
|
% based on the configuration parameter n1
|
|
%
|
|
|
|
r=sqrt(Px^2 + Py^2);
|
|
if (n1 == 1)
|
|
theta(1)= atan2(Py,Px) + asin(d3/r);
|
|
else
|
|
theta(1)= atan2(Py,Px) + pi - asin(d3/r);
|
|
end
|
|
|
|
%
|
|
% Solve for theta(2)
|
|
%
|
|
% V114 is defined in equation 43, p.39.
|
|
% r is defined in equation 47, p.39.
|
|
% Psi is defined in equation 49, p.40.
|
|
% theta(2) uses equations 50 and 51, p.40, based on the configuration
|
|
% parameter n2
|
|
%
|
|
|
|
V114= Px*cos(theta(1)) + Py*sin(theta(1));
|
|
r=sqrt(V114^2 + Pz^2);
|
|
Psi = acos((a2^2-d4^2-a3^2+V114^2+Pz^2)/(2.0*a2*r));
|
|
if ~isreal(Psi)
|
|
warning('RTB:ikine3:notreachable', 'point not reachable');
|
|
theta = [NaN NaN NaN NaN NaN NaN];
|
|
return
|
|
end
|
|
theta(2) = atan2(Pz,V114) + n2*Psi;
|
|
|
|
%
|
|
% Solve for theta(3)
|
|
%
|
|
% theta(3) uses equation 57, p. 40.
|
|
%
|
|
|
|
num = cos(theta(2))*V114+sin(theta(2))*Pz-a2;
|
|
den = cos(theta(2))*Pz - sin(theta(2))*V114;
|
|
theta(3) = atan2(a3,d4) - atan2(num, den);
|
|
|
|
% remove the link offset angles
|
|
for i=1:robot.n %#ok<*AGROW>
|
|
theta(i) = theta(i) - L(i).offset;
|
|
end
|