You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

232 lines
6.2 KiB

%SERIALLINK.RNE_DH Compute inverse dynamics via recursive Newton-Euler formulation
%
% Recursive Newton-Euler for standard Denavit-Hartenberg notation. Is invoked by
% R.RNE().
%
% See also SERIALLINK.RNE.
%
% verified against MAPLE code, which is verified by examples
%
% Copyright (C) 1993-2011, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for Matlab (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
function [tau,wbase] = rne_dh(robot, a1, a2, a3, a4, a5)
z0 = [0;0;1];
grav = robot.gravity; % default gravity from the object
fext = zeros(6, 1);
n = robot.n;
% check that robot object has dynamic parameters for each link
for j=1:n
link = robot.links(j);
if isempty(link.r) || isempty(link.I) || isempty(link.m)
error('dynamic parameters (m, r, I) not set in link %d', j);
end
end
% Set debug to:
% 0 no messages
% 1 display results of forward and backward recursions
% 2 display print R and p*
debug = 0;
if numcols(a1) == 3*n
Q = a1(:,1:n);
Qd = a1(:,n+1:2*n);
Qdd = a1(:,2*n+1:3*n);
np = numrows(Q);
if nargin >= 3,
grav = a2(:);
end
if nargin == 4
fext = a3;
end
else
np = numrows(a1);
Q = a1;
Qd = a2;
Qdd = a3;
if numcols(a1) ~= n || numcols(Qd) ~= n || numcols(Qdd) ~= n || ...
numrows(Qd) ~= np || numrows(Qdd) ~= np
error('bad data');
end
if nargin >= 5,
grav = a4(:);
end
if nargin == 6
fext = a5;
end
end
if isa(Q, 'sym')
tau(np, n) = sym();
else
tau = zeros(np,n);
end
for p=1:np
q = Q(p,:).';
qd = Qd(p,:).';
qdd = Qdd(p,:)';
Fm = [];
Nm = [];
pstarm = [];
Rm = [];
w = zeros(3,1);
wd = zeros(3,1);
vd = grav(:);
%
% init some variables, compute the link rotation matrices
%
for j=1:n
link = robot.links(j);
Tj = link.A(q(j));
if link.RP == 'R'
d = link.d;
else
d = q(j);
end
alpha = link.alpha;
pstar = [link.a; d*sin(alpha); d*cos(alpha)];
if j == 1
pstar = t2r(robot.base) * pstar;
Tj = robot.base * Tj;
end
pstarm(:,j) = pstar;
Rm{j} = t2r(Tj);
if debug>1
Rm{j}
Pstarm(:,j).'
end
end
%
% the forward recursion
%
for j=1:n
link = robot.links(j);
Rt = Rm{j}.'; % transpose!!
pstar = pstarm(:,j);
r = link.r;
%
% statement order is important here
%
if link.RP == 'R'
% revolute axis
wd = Rt*(wd + z0*qdd(j) + ...
cross(w,z0*qd(j)));
w = Rt*(w + z0*qd(j));
%v = cross(w,pstar) + Rt*v;
vd = cross(wd,pstar) + ...
cross(w, cross(w,pstar)) +Rt*vd;
else
% prismatic axis
w = Rt*w;
wd = Rt*wd;
vd = Rt*(z0*qdd(j)+vd) + ...
cross(wd,pstar) + ...
2*cross(w,Rt*z0*qd(j)) +...
cross(w, cross(w,pstar));
end
%whos
vhat = cross(wd,r.') + ...
cross(w,cross(w,r.')) + vd;
F = link.m*vhat;
N = link.I*wd + cross(w,link.I*w);
Fm = [Fm F];
Nm = [Nm N];
if debug
fprintf('w: '); fprintf('%.3f ', w)
fprintf('\nwd: '); fprintf('%.3f ', wd)
fprintf('\nvd: '); fprintf('%.3f ', vd)
fprintf('\nvdbar: '); fprintf('%.3f ', vhat)
fprintf('\n');
end
end
%
% the backward recursion
%
fext = fext(:);
f = fext(1:3); % force/moments on end of arm
nn = fext(4:6);
for j=n:-1:1
link = robot.links(j);
pstar = pstarm(:,j);
%
% order of these statements is important, since both
% nn and f are functions of previous f.
%
if j == n
R = eye(3,3);
else
R = Rm{j+1};
end
r = link.r;
nn = R*(nn + cross(R.'*pstar,f)) + ...
cross(pstar+r.',Fm(:,j)) + ...
Nm(:,j);
f = R*f + Fm(:,j);
if debug
fprintf('f: '); fprintf('%.3f ', f)
fprintf('\nn: '); fprintf('%.3f ', nn)
fprintf('\n');
end
R = Rm{j};
if link.RP == 'R'
% revolute
%tau(p,j) = nn.'*(R.'*z0) + ...
t = nn.'*(R.'*z0) + ...
link.G^2 * link.Jm*qdd(j) - ...
link.friction(qd(j));
tau(p,j) = t;
else
% prismatic
t = f.'*(R.'*z0) + ...
link.G^2 * link.Jm*qdd(j) - ...
link.friction(qd(j));
tau(p,j) = t;
end
end
% this last bit needs work/testing
R = Rm{1};
nn = R*(nn);
f = R*f;
wbase = [f; nn];
end
if isa(tau, 'sym')
tau = simplify(tau);
end